Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Predator–prey interactions are fundamental to ecological and evolutionary dynamics. Yet, predicting the outcome of such interactions—whether predators intercept prey or fail to do so—remains a challenge. An emerging hypothesis holds that interception trajectories of diverse predator species can be described by simple feedback control laws that map sensory inputs to motor outputs. This form of feedback control is widely used in engineered systems but suffers from degraded performance in the presence of processing delays such as those found in biological brains. We tested whether delay-uncompensated feedback control could explain predator pursuit manoeuvres using a novel experimental system to present hunting fish with virtual targets that manoeuvred in ways that push the limits of this type of control. We found that predator behaviour cannot be explained by delay-uncompensated feedback control, but is instead consistent with a pursuit algorithm that combines short-term forecasting of self-motion and prey motion with feedback control. This model predicts both predator interception trajectories and whether predators capture or fail to capture prey on a trial-by-trial basis. Our results demonstrate how animals can combine short-term forecasting with feedback control to generate robust flexible behaviours in the face of significant processing delays.more » « less
-
Understanding the mechanisms by which information and misinformation spread through groups of individual actors is essential to the prediction of phenomena ranging from coordinated group behaviors to misinformation epidemics. Transmission of information through groups depends on the rules that individuals use to transform the perceived actions of others into their own behaviors. Because it is often not possible to directly infer decision-making strategies in situ, most studies of behavioral spread assume that individuals make decisions by pooling or averaging the actions or behavioral states of neighbors. However, whether individuals may instead adopt more sophisticated strategies that exploit socially transmitted information, while remaining robust to misinformation, is unknown. Here, we study the relationship between individual decision-making and misinformation spread in groups of wild coral reef fish, where misinformation occurs in the form of false alarms that can spread contagiously through groups. Using automated visual field reconstruction of wild animals, we infer the precise sequences of socially transmitted visual stimuli perceived by individuals during decision-making. Our analysis reveals a feature of decision-making essential for controlling misinformation spread: dynamic adjustments in sensitivity to socially transmitted cues. This form of dynamic gain control can be achieved by a simple and biologically widespread decision-making circuit, and it renders individual behavior robust to natural fluctuations in misinformation exposure.more » « less
-
Abstract Porous media flows are common in both natural and anthropogenic systems. Mapping these flows in a laboratory setting is challenging and often requires non-intrusive measurement techniques, such as particle image velocimetry (PIV) coupled with refractive index matching (RIM). RIM-coupled PIV allows the mapping of velocity fields around transparent solids by analyzing the movement of neutrally buoyant micron-sized seeding particles. The use of this technique in a porous medium can be problematic because seeding particles adhere to grains, which causes the grain bed to lose transparency and can obstruct pore flows. Another non-intrusive optical technique, planar laser-induced fluorescence (PLIF), can be paired with RIM and does not have this limitation because fluorescent dye is used instead of particles, but it has been chiefly used for qualitative flow visualization. Here, we propose a quantitative PLIF-based methodology to map both porous media flow fields and porous media architecture. Velocity fields are obtained by tracking the advection-dominated movement of the fluorescent dye plume front within a porous medium. We also propose an automatic tracking algorithm that quantifies 2D velocity components as the plume moves through space in both an Eulerian and a Lagrangian framework. We apply this algorithm to three data sets: a synthetic data set and two laboratory experiments. Performance of this algorithm is reported by the mean (bias error,B) and standard deviation (random error,SD) of the residuals between its results and the reference data. For the synthetic data, the algorithm produces maximum errors ofB & SD= 32% & 23% in the Eulerian framework, respectively, andB & SD= −0.04% & 3.9% in the Lagrangian framework. The small-scale laboratory experimental data requires the Eulerian framework and produce errors ofB & SD= −0.5% & 33%. The Lagrangian framework is used on the large-scale laboratory experimental data and produces errors ofB & SD= 5% & 44%. Mapping the porous media architecture shows negligible error for reconstructing calibration grains of known dimensions.more » « less
An official website of the United States government
